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Numerical solution of the system of diffusion equations which describe a system of parallel 
reactions under the conditions of internal diffusion in a non-isotropic spherical catalyst particle 
was carried out in this paper. The solution of the problem was sought for various radial activity 
profile corresponding to the concentration profile of active component in a particle of supported 
catalyst and for various values of the Thiele modulus of both parallel reactions. Further, the 
effect of reaction order of single reactions (zeroth or first) with respect to the effectiveness factor 
of the internal diffusion and to the selectivity of the main reaction was investigated. It is evident 
from the results that the change of the activity profile in the particle has a great effect on the 
selectivity and on the effectiveness factor of the internal diffusion. 

The impregnation techniques of catalyst preparation or its gradual deactivation in 
the course of its exploitation often cause the existence of non-uniform activity profile 
in the catalyst particle. Under these conditions it is impossible to use usual methods1 

for describing the effect of internal diffusion on the rate of catalytic reaction. Espe
cially significant are the catalysts with an active component concentrated in the 
particle surface shell which exhibit higher reaction rate2, and in case of consecutive 
reactions also the enhanced selectivity3. 

The previous works dealing with the problem of non-uniform activity profile in an 
isothermal catalyst particle were summarized in survey4. Recently, the theoretical 
description of the problem has been used to seek the optimum distribution of active 
component inside the catalyst particle both from the point of view of the maximum 
selectivity of the parallel and consecutive reactions5 -7 and also with regard to the 
deactivation of catalystS. The opposite approach was followed in papers9 •10 when 
the distribution of activity in the catalyst particle was determined on the basis of 
kinetic data. The practical importance of theoretical knowledge consists, e.g., in 
optimizing the ethylene oxidation6 ,11, increasing the selectivity of naphthalene 
oxidation 12, etc. 

The aim of this work has been the numerical solution of the problem of internal 
diffusion for isothermal reactions of the zeroth or first order. Analogously to our 
preceding papers2 ,3, the collocation method was used for the solution. 

Collect. Czech. Chern. Cornrnun. (Vol. 54) (1989) 



82 Hanika, Ehlova: 

THEORETICAL 

The diffusion of reacting components for parallel reactions illustrated by the scheme 

is described, for the spherical particle geometry, by the following system of differen
tial equations 

(I) 

(2) 

where CPi represents the Thiele modulus of the i-th reaction defined by the equation 

(3) 

The activity profile in the catalyst particle is represented by the chosen function of 
radial coordinate according to the relation2 

(4) 

These equations must be completed by the boundary conditions 

dCA = dCB = 0, R = 0 
dR dR 

(5a) 

C A = 1, CB = 0, R = 1 . (5b) 

Solution of Model 

On the basis of spherical symmetry of the system, it is apparent that the concentration 
profiles of reacting components inside the particle of catalyst can be approximated 
by an even function. In the simplest case it is possible to use polynomials with even 
powers of radial coordinate to describe the concentration profiles of component A 
or B. The polynomials satisfy completely the system of differential equations at the 
collocation point chosen in advance. Unlike the procedures starting from the Jacobi 
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polynomials13 ,14, the proposed method is considerably simpler and the numerical 
calculation more rapid. 

Therefore, the solution of the system of differential equations (1), (2) will be 
assumed in the form of the following polynomials corresponding to the concentra
tion profiles of component A or B, respectively, in the catalyst particle: 

CA(R) = Ao + A2R2 + A4R4 + A6R6 , 

CB(R) = Bo + B2R2 + B4R4 + B6R6 • 

(6) 

(7) 

Let the chosen polynomials fulfil the diffusion equation at two chosen collocation 
points within the interval RI E (0, 1) and, further, also both boundary conditions at 
the points R = ° and 1, respectively. In this way it is possible to determine the 
unknown coefficients A j , Bj in the chosen polynomials. 

Let us consider the unity orders of both reactions (n = m = 1). Differential 
equation (1) may then be replaced by a system of linear equations which has the 
following form 

-Ao[cpi + cpD R~ + A2 [6 - R;+"(cpi + cpD] + A4 [20R; - Ri+"(cpi + cpD] + 

(8) 

From boundary conditions (5a) and (5b) follow two more equations for the unknown 
coefficient of the sought polynomial C A(R) 

2A2 + 4A4 + 6A6 = ° for R = 0. 

(9) 

(10) 

Thus, the solution of Eq. (1) is replaced by the solution of four linear equations 
(8)-(10) with respect to the sought coefficients Aj • The concentration profile of 
substance B in the catalyst particle is determined analogously by solving the following 
system of linear algebraic equations 

(12) 

(13) 

The systems of Eqs (8)-(10) and (lJ)-(13) were in this work solved by the 
matrix inversion method for the chosen collocation points with coordinates 
[Rh R 2 ] = [1/3,2/3] and [0'8,0'9], respectively. 
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The system of differential equations which describe the system of parallel reactions 
was solved also for the zeroth order of both reactions and for the combination of 
orders 0 and 1. 

The solution of diffusion equations for parallel reactions each of zeroth order is 
much simpler. The respective equations have these forms 

A2 [4 + 2R;] + A4[4Rj + 12Ri] + A6[6R~ + 30Rf] = 

= [<pi + <pD R~ , 

6B2 + 20B4R~ + 42B6Ri = - <piR~, i = 1; 2 

(l4) 

(l5) 

In case that the first order was considered for the first parallel reaction and the zeroth 
order for the second one, numerical solution leads to the following relations 

-Ao<piR~ + A2 [6 - (piR~+~] + A4[20R; - <piRi+ a] + 
+ Ab[42Ri - <piR?+a] = <p~R~. 

Determination of Effectiveness Factor and Selectivity 

(l6) 

(17) 

By finding all coefficients A j in the chosen polynomial C A(1~) and coefficients B j 

in polynomial CB(R), the concentration profiles of reacting components in the cata
lyst particle are defined and can be used for calculating the effectiveness factor of 
internal diffusion according to the relation 1 

(18) 

After inserting the polynomial and integration, we get in case of the first reaction 
order the following form for the effectiveness factor 

11 = 3 + 0( -- + ~~-- + --- + -- . [ ] [ Ao A 1 A4 A6 ] 
3+0( 5+iX 7+iX 9+0( 

(19) 

The effect of internal diffusion on the selectivity of parallel reactions* can be ex
pressed by the selectivity parameter defined by the relation 

(20) 

• S(diffusion) = S. S(kinetic), where S(kinetic)= kod(ko1 -.k02) for 11 =~ m 
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For parallel reactions of the same order, the selectivity parameter S depends neither 
on the activity profile in the particle nor on the Thiele moduli of both the reactions, 
and parameter S is equal to unity. 

For the combination of the first reaction order of the first reaction and zeroth 
order of the second reaction, we obtain, for the selectivity parameter of the system 
of parallel reactions, the relation 

S = [qJi + qJ~J [~ + ~ + ~ + ~JI 
3+0( 5+0( 7+!X 9+0( 

l[ qJiAo + qJiAz + qJiA 4 + _qJiA 6_ + qJ~-J. 
3+0( 5+0( 7+0( 9+0( 3+0( 

(21) 

Solvability of the System of Algebraic Equations 

For the first order parallel reactions, the system of algebraic equations has a solution 
for the whole chosen interval of values of the Thiele modulus qJz (0·1 < qJz < 50). 
No other constraints occur even for various degrees of inhomogeneity 0((0·1 -;- 10) 
and for the ratio of the Thiele moduli of both the reactions K(O·l -;- 10). For the 
zeroth order of both the reactions, the system is solvable (i.e., the calculated con
centrations of components in the particle are positive) for 0( < 2 within the interval 
of the Thiele moduli qJ2 ~ 2, and for 0( ~ 2 in the interval of qJ2 ~ 5. Further con
straint occurs for the ratio of the Thiele moduli K > 1. For K = 2 and for 0( < 1, 
it is possible to obtain usable solutions of system of algebraic equations only for 
low values of the Thiele modulus qJz (up to qJ2 = 1). For K = 10 and for 0·1 < 0( < 
< 10, the system is solvable within the interval qJ2 < 0·5. 

When solving the system of algebraic equations for the combination of different 
reaction orders of parallel reactions (lor 0), when the first order was assigned to 
the first reaction, it is possible to obtain the solution in the whole investigated interval 
of values of the Thiele modulus ratio of both reactions (0·1 ~ K ~ 10) and degrees 
of inhomogeneity (0( = 0·1 -;- 10). However, the usable results are obtained only 
for lower values of the Thiele modulus (qJz ~ 5). 

Similarly to the preceding workz, the accuracy of the numerical determination 
of the effectiveness factor was judged on the basis of comparison of the calculation 
result for an approximately isotropic spherical particle (0( = 0·1) and for the reaction 
of the first order with analytical solution. It has appeared that the error of numerical 
solution increases with increasing value of the Thiele modulus qJ2. For qJz = 5, the 
deviation of numerical solution compared to the analytical one reaches 0·7%. For 
higher values of the Thiele modulus (qJz = 10), the numerical calculation shows 
already considerable deviations from the analytical solution (as much as several ten 
percent) in dependence on the chosen parameters. In this case it was necessary to 
choose greater number of collocation points to obtain a more accurate result. 
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Choice of Position of Collocation Points 

In Table I it is lucidly shown how differ the solutions of diffusion equations for dif
ferent pairs of collocation points [1/3,2/3] and [0'8,0·9]. It follows from the values 
given in Table I that the effect of choosing the position of collocation points is the 
greater the higher is the value of the Thiele moduli for both reactons, therefore in the 
case when both the reactions take place mostly in the surface shell of the catalyst 
particle. 

On the basis of physical view it is therefore better to locate the collocation points 
into the regions where the assumed solution, i.e., the dependence of concentration 
of reacting components on the radial coordinate has a high derivative. 

RESULTS AND DISCUSSION 

The numerical results presented in this work provide an insight into the dependence 
of the internal diffusion effectiveness factor and selectivity parameter on the proper
ties of system, i.e., on the ratio of the Thiele moduli K = CPr/CP2' the degree of in
homogeneity of the catalyst particle IX and the order of both reactions n, m. 

Effectiveness Factor of Internal Diffusion 

The dependence of effectiveness factor of the catalyst on the Thiele modulus CP2 
is shown in Fig. 1 for various values of inhomogeneity parameter IX. The ratio of 
the Thiele moduli of both parallel reactions of orders [n, m] = [1, 1 J or [1, OJ was 
chosen K = 1 in this case. It follows from the figure that the non-uniform distribution 

TABLE I 

Effect of the position of collocation points on the effectiveness factor 

Parameters of calculation Thiele modulus Effectiveness factor 11 

K n m 'P2 
Ri = [t; 1-] Ri = [0'8; 0'9] 

0'1 o o 0·1 0·99895 0·99876 
0'5 0·97383 0·96921 
1·0 0·89532 0·87685 
2·0 0'58130 0·50740 

10 10 5 0·90539 0·93539 
10 0·87571 0·66499 
20 0·86500 0·61143 
50 0·86080 0·59748 
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of active component in the catalyst particle considerably influences the relationship 
between the Thiele modulus and the effectiveness factor. For both the combinations 
of reaction orders holds that with increasing the inhomogeneity parameter, i.e., 
in case that the catalyst activity increases from the centre of particle to its surface, 
increases also the value of effectiveness factor. Further it follows from the figure that 
for the increasing value of both the Thiele moduli, decreases naturally the effective
ness factor. The calculated dependences give further an evidence that higher values 
of the effectiveness factor were attained on the assumption of the unity reaction 
orders of both reactions. 

The character of dependences found is the same also for other reaction orders of 
both reactions, i.e., 0 or 1, respectively. For example, Fig. 2 was obtained for the 
zeroth order of both reactions. 

Comparison of the effect of reaction orders of both reactions is given in Fig. 3. 
It illustrates the dependence of the effectiveness factor on the Thiele moduli for 
different values of reaction orders of parallel reactions. It follows from the figure 
that this dependence is especially sensitive to the values of reaction order in the 
region of higher values of the Thiele modulus and for the isotropic catalyst particle, 
therefore, in the cases of greater effect of internal diffusion on the course of both 
reactions. 
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FIG.! 

Effect of the Thiele moduli rp and character 
of activity profile on the effectiveness factor 
" (K = 1); n = I, m = 1 (solid line), n = 1, 
m = 0 (broken line) for the inhomogeneity 
parameters IX = 0·1 to 10 
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Selectivity of Parallel Reactions 

Besides the effectiveness factor of internal diffusion of catalyst, in this work was also 
studied the selectivity of parallel reactions of various orders in dependence on the 
ratio of the Thiele moduli K and the degree of inhomogeneity IX. 

The selectivity parameter defined by Eq. (20) was examined only for reactions of 
different orders (n = 1, m = 0) because for the parallel reactions of the same order, 
the value of the selectivity parameter does not change with respect to the parameters 
examined and is always equal to unity. 

The results of calculation are given in Fig. 4 for various values of the Thiele 
moduli. The low values of moduli (i'J>2 = 0·1 and K < 10) represent the situation 
close to the kinetic region whereas the data determined for i'J>2 > 1 and K > 1 
illustrate the situation of a greater effect of internal diffusion on the course of parallel 
reactions. In this figure, the effect of the inhomogeneity degree of the catalyst particle 
on the value of the selectivity parameter is as well shown. It has appeared that the 
dependence is considerably sensitive to the value of inhomogeneity degree IX, with 
its increasing value increases also the value of the selectivity parameter. This state
ment leads to the conclusion that the particles of catalysts which have inside steeper 
activity profile yield higher selectivity of parallel reactions. 
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FIG. 3 

Effect of reaction orders of reactions n, m on 
the dependence of effectiveness factor " on 
the Thiele moduli ffJ for K = 1; n = 1, 
m 0= 1, (solid line), n = 1, m = 0 (broken 
line), and n = 0, m = 0 (dash and dot line) 
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FIG. 4 

Effect of ratio of the Thiele moduli K and 
activity profile on the selectivity S of reac
tions of different order (n = 1, m = 0); 
IX = 0,1 to 10 for ffJ2 = 2 (solid line), ffJ2 = 1 
(dash and dot line), and ffJ2 = 0·1 (broken 
line) 
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Conclusion 

The main aim of this work has been the numerical solution of mathematical model 
of unisotropic catalyst particle for a system of parallel reactions influenced by in
ternal diffusion. 

To solve the system of diffusion equations, the collocation method using 2 col
location points was chosen. It has appeared that the collocation points are better 
to be located to the place where the assumed solution, i.e., the function of concentra
tion of reacting component on radial coordinate, has a high derivative. 

The numerical solution was obtained for a limited range of parameters. More 
precise results, especially in the region of strong influence of internal diffusion, 
would be possible to reach by solving the problem with more collocation points. 

The effect was investigated of the catalyst particle inhomogeneity, of the ratio of 
the Thiele moduli of both reactions and of reaction orders on the internal diffusion 
effectiveness factor and on the selectivity parameter of parallel reactions. 

It has followed from the results that the catalysts with a higher value of the in
homogeneity degree (i.e., such where the concentration of active component in
creases from the centre of particle towards its outer surface) yield both higher values 
of the internal diffusion effectiveness factors and also higher selectivity of parallel 
reactions of different order. 

LIST OF SYMBOLS 

Aj coefficient of polynomial 
Bj coefficient of polynomial 
C dimensionless concentration of reacting component 
Co concentration outside particle, moll- 1 

dekv equivalent diameter of grain, m 
Def effective diffusion coefficient, m 2 s - 1 

ko rate constant for R = 1 
K ratio of Thiele moduli of parallel reactions 
m reaction order 
n reaction order 
R radial coordinate 
S selectivity parameter 
IX inhomogeneity parameter 
'I internal diffusion effectiveness factor 
'fI Thiele modulus 

Subscripts 

A reaction component A 
B reaction component B 

designation of collocation point 
j designation of coefficient of polynomial 
1, 2 designation of reactions 
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